INDIAN SCHOOL AL WADI AL KABIR DEPARTMENT OF SCIENCE CLASS IX (2022-23) MID TERM EXAMINATION SET-1 ANSWER KEY

Sl.no	ANSWERS	Marks	
1	a) uniform motion	1	
2	(b) Car B is the slowest.	1	
3	(a) If the car is moving on a straight road	1	
4	(b) always act on different bodies in opposite directions	1	
5	(a) remains the same	1	
6	(d) decrease the rate of change of momentum	1	
7	(c)Oxygen, water, sugar	1	
8	Solids	1	
9	Colloidal solution is homogeneous		
10	(c)(i), (iii) and (iv)	1	
11	The product will always have a fixed composition.	1	
12	(a) the concentration of water molecules in the cell is higher than the	1	
	concentration of water molecules in the surrounding medium.		
13	(d) (iv) and (ii)	1	
14	(c) Protein synthesis; cellular digestion	1	
15	(c) Chlorenchyma provide flexibility to plants	1	
16	(d) Sclerenchyma, A – lumen, B – lignified thick cell wall	1	
	CASE BASED STUDY QUESTIONS/SOURCE BASED		
17 (i)	(b) 30m/s	1	
17(ii)) How far does it travel in 1 second?		
	(b) 30m		
17(iii)	How far does it travel in 6 seconds?	1	
	(c) 180 m		
17(iv)	Average speed Average velocity	2	
	1. Average speed is the total		
	distance traveled divided by 1. Average velocity is the displacement		
	the total time taken. Speed divided by the time. Velocity only		
	takes into account the total takes into account the starting and		
	path length traveled. ending points of an object's path.		
	2. Average speed is a scalar 2. Average velocity is a vector quantity.		
	quantity. 3. Average velocity can be positive or		
	3. Average speed is always negative depending on the direction.		
	positive.		
18(i)	(c)Carbon dioxide	1	
18(ii)	i) Metalloid is an element with properties intermediate between those		
	of metals and non-metals.		
18(iii)) Water is a compound because:		

	1. Its composition is fixed.			
	2. They are (hydrogen and oxygen) chemically combined to each			
	other.			
	3. It has a definite formula.			
	4. The properties of water are entirely different from the properties of			
	hydrogen and oxygen. (Any two points)			
18(iv)	Any one property of metals, non-metals and metalloids+ one			
	example each.			
19(i)	The examples of haploid cells produced by meiosis are sex cells, or			
	sperm and eggs			
19(ii)	The goal of mitosis is to produce daughter cells that are genetically			
	identical to their mothers, with not a single chromosome more or			
	less. (½ mark)			
	Meiosis, is used for just one purpose in the human body: the			
	production of gametes—sex cells, or sperm and eggs. (1/2 mark)			
	When a sperm and an egg join in fertilization, the two haploid sets			
	of chromosomes form a complete diploid set. (1 mark)			
20(i)	(b) lateral meristem	(1 mark)		
20(ii)	Length or height	(1 mark)		
20(iii)	Any two characteristics of meristematic tissue. (1/2 mark for each			
	characteristic)			
	SHORT ANSWER TYPE QUESTIONS (3 MARKS)			
21	a) Due to inertia of rest. Explanation	1		
	b) Application of Newton's second law. Force is inversely			
	proportional to time for the same change in momentum.			
	c) Application of Newton's third law of motion. Explanation.			
22	m = 50/1000 = 0.05 kg			
	u = 30m/s $v = 0$ $s = 0.1m$	1/2		
	$v^2 - u^2 = 2as$	1/2		
	0 - 900 = 2 x a x 0.1	1/2		
	a = -4500 m/s2	1/2		
	F = ma = 0.05 x - 4500 = -225 N	1/2		
	OR			
	m=1800 kg $u = 40 m/s$ $v = 0$ $t = 20 s$	1/2		
	mu = 1800 x 40 = 72000 kgm/s	1/2		
	mv = 0	1		
	mv - mu/t = -3600N	1/2		
	a = v - u/t = 0 - 40/20 = -2m/s2	1/2		
23	(i) Any two characteristics of colloids	1/2 + 1/2		
23	(i) Dispersed phase and dispersion medium	$\frac{1}{2} + \frac{1}{2}$		
	(iii) Blood, starch solution	$\frac{1}{2} + \frac{1}{2}$		
	OR	,_		
	(i) Aerated drinks – solute-carbon dioxide, solvent-water			
	(ii) Tincture of iodine-solute-iodine, solvent-alcohol	$\frac{1}{2} + \frac{1}{2}$		

	(iii) copper sulphate solution-solute-copper sulphate,	$\frac{1}{2} + \frac{1}{2}$		
	solvent-water	$\frac{1}{2} + \frac{1}{2}$		
24	(a)(i) The process of intermixing of two or more different types of	1		
	particles.			
	(11) The maximum amount of solute that can be dissolved in a given	1		
	amount of solvent is called its solubility at that temperature.			
		1		
25	(b) The rate of diffusion increases with increase in temperature	1		
25	a.			
	Apical meristem Intercalary meristem			
	Fig. 6.2: Location of meristematic tissue in plant body	(½ + ½X3 = 1 ½ =2 mark) (2 +1 = 3 marks)		
	(1/2 mark for correct diagram, ½ mark for each correct label)			
	b. Collenchyma Tissue (1 mark)			
26	'suicide bags' Lysosomes and (½ mark)			
	when the cell gets damaged lysosomes may burst and the enzymes			
	digest their own cell. Therefore, lysosomes are also known as the	(½ + ½ =1		
	'suicide bags' of a cell. (Relevant explanation) (1 mark)	mark)		
	The energy required for various chemical activities needed for life is	(1 + 1 = 2		
	released by mitochondria in the form of ATP (Adenosine	marks) (1 ± 2 = 2		
	triphosphate) molecules. A IP is known as the energy currency of the call (Palayant avalantian) (1 mark)	(1+2-3 marks)		
	OR			
	(a) There is shrinkage or contraction of the contents of the cell away			
	from the cell wall. (1 mark)			
	b. This phenomenon is known as plasmolysis. (1 mark)	(1 + 1 + 1 =		
	Definition - The process of shrinkage of the cytoplasm as a result of	3 marks)		
	hypertonic solution that has a higher concentration of solutes than the			
	cell does. (1 mark)			
	LONG ANSWER TYPE QUESTIONS (5 MARKS)			
27	(a) OA is a straight-line graph between speed and time, and it is	1		
	sloping upward from O to A. Therefore, the graph line OA represents			
	uniform acceleration.	1		
	(b) AB is a straight-line graph between speed and time, which is			
	parallel to the time axis (x-axis).			
	So, AB represents uniform speed. There is no acceleration from A to			

	(c) BC is a straight-line graph between speed and time which is sloping downwards from B to C. Therefore, BC represents uniform retardation or negative acceleration. (d) Acceleration of the body as we see from graph line OA represents it. So, the slope of velocity-time graph OA will give the acceleration of the body. Thus, Acceleration = Slope of line OA = AD/OD We have, AD = 6 m/s, and OD = 4 s So, acceleration = $6m/s4s = 1.5 m/s^2$ (e) The slope of line graph BC represents the retardation of the body. So, retardation = Slope of line BC = BE/EC We have, BE = $6m/s$, EC = $16 - 10 = 6s$ Detendation = $6m/s4s = 1m/s^2$			
28	a) Statement	1		
28	a) Statement Consider an object of mass m moving along a straight line with an initial velocity u (say). It is uniformly accelerated to velocity u in time t by the application of a constant force F in time t. Then, initial momentum of the object = mu $p_1 = mu$	1 ¹ / ₂ (figure) 1/2		
	$p_1 = mu$ Final momentum of the object = my			
	$p_2 = mv$	/ -		
	\therefore Change in momentum = mv – mu = m(v – u)			
	The rate of change in momentum = $m \times (v-u)t$			
	According to Newton's second law of motion, we have			
	$F \propto m(v-u)t$			
	F = km(v-u)t			
	$F = kma \dots(1)$	1/2		
	Here, $a = v - u/t =$ the rate of change of velocity.			
	= acceleration			
	K = a constant of proportionality Putting $m = 1 \text{kg}$, $a = 1 \text{ ms}^{-2}$			
	r uting in -1 kg, $a - 1$ ins $\therefore k - 1$	1/2+1/2		
	K = 1 From equation (1) we have			
	F = ma			
	This represents the second law of motion.			
	b) $\mathbf{F} = \mathbf{ma}$			
	$a = F/m = 20/2.5 = 8m/s^2$			
	OR	1+1+1		
	a) Statement of three laws			
	b)			

	Mass of the object Initial Velocity (u) Final Velocity (v1) time (t1) = 3 sect time (t2) = 4 sect F = m (v-u)/t = 15	t (m) = 15 kg = 10 m/s = 15 m/s onds 5 x 5/3 = 25N		1
	a = v - u/t = 5/3m/s2			-
20	v = u + at = 10 + 5/3 x 4 = 16.66 m/s			1
29	 (a) Any one difference between solution, suspension and conoid (b) When no more solute is dissolved in a solution, it is known as saturated solution. If the amount of solute is less than the saturation level, it is known as unsaturated solution (c) Mass of solute (salt) = 40 g 			2
	Mass of solvent (water) = 320 g			
	We know	,		
	aalvant			
	solvent $= 40 \text{ g} + 320 \text{ g}$			2
	= 360 g			
	Mass by Mass percentage of solution = Mass of solute			
	x100		Mass of solution = $\frac{40 \times 100}{360}$	
		=11.1 %		
	OR (a) Concentration in terms of mass by mass percentage= mass of solute/mass of solution x 100 = 65/500 x 100 =13%			2
	(b)			
	property	True solution	colloids	
	Tyndall effect	Does not show	Shows tyndall effect	1x3=3
	Stability	stable	stable	
	Particle size	Less than 1 nm	Between 1nm and 100nm	
30	(a)			3
	homogeneous heterogeneous			
	No v	sible boundary	It has visible boundaries	
	throughout.			

		Eq: Sugar solution	Eq: Challs pourder in	
		EgSugar solution	EgChark powder in	1
			water	1
	(b) (i) Particle size is less than 1nm.			
	(ii)Particles are not big enough to scatter a beam of light.			
31	<u>(a)</u>			
		Capsule Cell wall		
		Plasma membrane Mesosome	2	
	- Charles	25 Start Cytoplasm		
	Plasmid	D.S. MINUCIOOId		
	7	H-SSH		
	SRIbosomes -	HE DE		
		Flagellum		
		\supset		
	1/ month for	acompat diagnom		(½ + ½X5 =
	72 Mark for			2 ½ =3
	¹ / ₂ mark for each correct label			mark)
	Any two differences between prokaryotic and eukaryotic cell			
	1 mark for each difference			
32	a. i. Chloroplast			(½X4= 2)
	ii. Cytoplasm			
	iii. Prokaryotic cell			
	iv. Vacuole			
	(1/2 mark for each correct answer)			
	b. Mitochondria and chloroplast $(\frac{1}{2} + \frac{1}{2} = 1 \text{ mark})$			(1 mark)
	They are ca	alled strange organelles becau	use both have their own DNA	
	and ribosomes and they can make some of their own protein (1 mark)			(1 mark)
	c. osmosis	is the movement of water mo	lecules from a solution with	(1 mark)
	a high conc	centration of water molecules	to a solution with a lower	
	concentrati	on of water molecules, throu	gh a cell's partially permeable	
	membrane.			(2+1+1+1=5
	momoruno.			marks)
	OR			
	(a)			
		Wall	thickenings	
	- Nucleus Vacuole			
		Cell	wall	
	Correct diagram 1 mark			(1/2) = 2
	Contect diagram 1 mark			
	(b) Any two differences between Darenchyma and Collenshyma			
	(b) Any two differences between Parenchyma and Collenchyma (1 mark for each correct difference)			
	(1 mark for each correct difference)			